Sponsoring Units: DCMPChair: Brayden Ware, University of Maryland, College Park

Thu. March 7, 9:12 a.m. – 9:24 a.m. CST

M100E

The concept of space-evolution (or space-time duality) has emerged as a promising approach for studying quantum dynamics. The basic idea involves exchanging the roles of space and time, evolving the system using a space transfer matrix rather than the time evolution operator. The infinite-volume limit is then described by the fixed points of the latter transfer matrix, also known as influence matrices. To establish the potential of this method as a bona fide computational scheme, it is important to understand whether the influence matrices can be efficiently encoded in a classical computer. Here we begin this quest by presenting a systematic characterisation of their entanglement -- dubbed temporal entanglement -- in chaotic quantum systems. We consider the most general form of space-evolution, i.e., evolution in a generic space-like direction, and present two fundamental results. First, we show that temporal entanglement always follows a volume law in time. Second, we identify two marginal cases -- (i) pure space evolution in generic chaotic systems (ii) any space-like evolution in dual-unitary circuits -- where Rényi entropies with index larger than one are sub-linear in time while the von Neumann entanglement entropy grows linearly. We attribute this behaviour to the existence of a product state with large overlap with the influence matrices. This unexpected structure in the temporal entanglement spectrum might be the key to an efficient computational implementation of the space evolution.

Presented By

Tianci Zhou (Virginia Tech)

Authors

Tianci Zhou (Virginia Tech)

Alessandro Foligno (University of Nottingham)

Bruno Bertini (University of Nottingham)

Search by author, title, or number

Temporal Entanglement in Chaotic Quantum Circuits

Thu. March 7, 9:12 a.m. – 9:24 a.m. CST

M100E

The concept of space-evolution (or space-time duality) has emerged as a promising approach for studying quantum dynamics. The basic idea involves exchanging the roles of space and time, evolving the system using a space transfer matrix rather than the time evolution operator. The infinite-volume limit is then described by the fixed points of the latter transfer matrix, also known as influence matrices. To establish the potential of this method as a bona fide computational scheme, it is important to understand whether the influence matrices can be efficiently encoded in a classical computer. Here we begin this quest by presenting a systematic characterisation of their entanglement -- dubbed temporal entanglement -- in chaotic quantum systems. We consider the most general form of space-evolution, i.e., evolution in a generic space-like direction, and present two fundamental results. First, we show that temporal entanglement always follows a volume law in time. Second, we identify two marginal cases -- (i) pure space evolution in generic chaotic systems (ii) any space-like evolution in dual-unitary circuits -- where Rényi entropies with index larger than one are sub-linear in time while the von Neumann entanglement entropy grows linearly. We attribute this behaviour to the existence of a product state with large overlap with the influence matrices. This unexpected structure in the temporal entanglement spectrum might be the key to an efficient computational implementation of the space evolution.