Skip to Content

W47: Superconducting Bosonic and GKP Qubits


Sponsoring Units: DQIChair: Long Nguyen, University of California, Berkeley

Thu. March 7, 5:00 p.m. – 5:12 p.m. CST


Approaches based on bosonic codes hold the promise of easing the requirements on the number of modes needed for fault-tolerant quantum computing compared with ones based on two-level systems. The finite-energy Gottesman-Kitaev-Preskill (GKP) code is of particular interest, as highlighted by recent experiments demonstrating an increase of its logical lifetime from quantum error correction (QEC) in superconducting devices [1-3]. Nevertheless, a second layer of quantum error correction will likely be required to reach the error rates necessary for useful quantum computation [4]. An important step in that direction is the demonstration of operations in an architecture involving multiple GKP qubits. Here, we present experimental progress on the implementation of a building block composed of a syndrome unit connected to two data units, each hosting an encoded GKP qubit.

[1] P. Campagne-Ibarcq et al.,Nature, 584, 368 (2019).

[2] V. V. Sivak et al., Nature, 616, 55 (2023).

[3] D. Lachance-Quirion et al., arXiv:2310.11400 (2023).

[4] A. L. Grimsmo and S. Puri, PRX Quantum, 2, 020101 (2021).

Presented By

  • Dany Lachance-Quirion (Nord Quantique)


  • Dany Lachance-Quirion (Nord Quantique)
  • Sandoko Kosen (Nord Quantique)
  • Pascal Lemieux (Nord Quantique)
  • Matthew Hamer (Nord Quantique)
  • Florian Hopfmueller (Nord Quantique)
  • Nicholas E Frattini (Nord Quantique)
  • Jean Olivier Simoneau (Nord Quantique)
  • Amélie Lacroix (Nord Quantique)
  • Joëlle Fréchette-Viens (Nord Quantique)
  • Amandeep Singh Buppal (Nord Quantique)
  • Marc-Antoine Lemonde (Nord Quantique)
  • Julien Camirand Lemyre (Nord Quantique)
  • Philippe St-Jean (Nord Quantique)